Equivariant embeddings of finite abelian group actions in euclidean space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant LS-category for finite group actions

In this paper we study the equivariant category of finite group actions. We introduce the basic filtration for the orbit space of the action. In terms of this filtration we give upper and lower estimates of the equivariant category. The idea for the proof is parallel to the approach in [3] for compact-Hausdorff foliations. We give examples to show that both the upper and lower bounds are realiz...

متن کامل

The Equivariant Complex Cobordism Ring of a Finite Abelian Group

We compute the equivariant (stable) complex cobordism ring (MUG)∗ for finite abelian groups G.

متن کامل

Equivariant Holomorphic Morse Inequalities II: Torus and Non-Abelian Group Actions

We extend the equivariant holomorphic Morse inequalities of circle actions to cases with torus and non-Abelian group action. For torus actions, there is a set of inequalities for each choice of action chambers specifying directions in the Lie algebra of the torus. If the group is non-Abelian, there is in addition an action of the Weyl group on the fixed-point set of its maximal torus. The sum o...

متن کامل

Equivariant Periodicity for Compact Group Actions

Probably the most basic structural phenomenon of high dimensional topology is Siebenmann’s periodicity theorem [3] (as amended by Nicas [5]), which asserts that the manifolds homotopy equivalent to M are in a one-to-one correspondence with (a subset of, because of nonresolvable honology manifolds [1]) those homotopy equivalent to M×D. The main goal of this paper is to show the following extensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 1980

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm-110-1-25-33